

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-23/0342 of 2023/04/24

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	TIT PE-500 Bonded anchor
Product family to which the above construction product belongs:	Bonded anchor with anchor rod for use in concrete under static, quasi-static or seismic action (performance category C2)
Manufacturer:	TOO Energon Service Uralsk, Chapaeva str., bld. 22 Kazakistan Internet www.energon.asia
Manufacturing plant:	TOO Energon Service Manufacturing Plant I
This European Technical Assessment contains:	31 pages including 26 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"
This version replaces:	

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

Technical description of the product

The TIT PE-500 is a bonded anchor (injection type) consisting of an injection mortar cartridge equipped with a special mixing nozzle and a steel element which is a commercial threaded rod size M8 to M30 with hexagon nut and washer or reinforcing bars (rebar) from \emptyset 8 mm to \emptyset 32 mm.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The anchor rod is anchored by the bond between rod, mortar and concrete.

The anchor in the range of M8 to M30, \emptyset 8 to \emptyset 32 and the mortar cartridges corresponds to the drawings given in the Annex A

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years and 100 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

No performance assessed.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

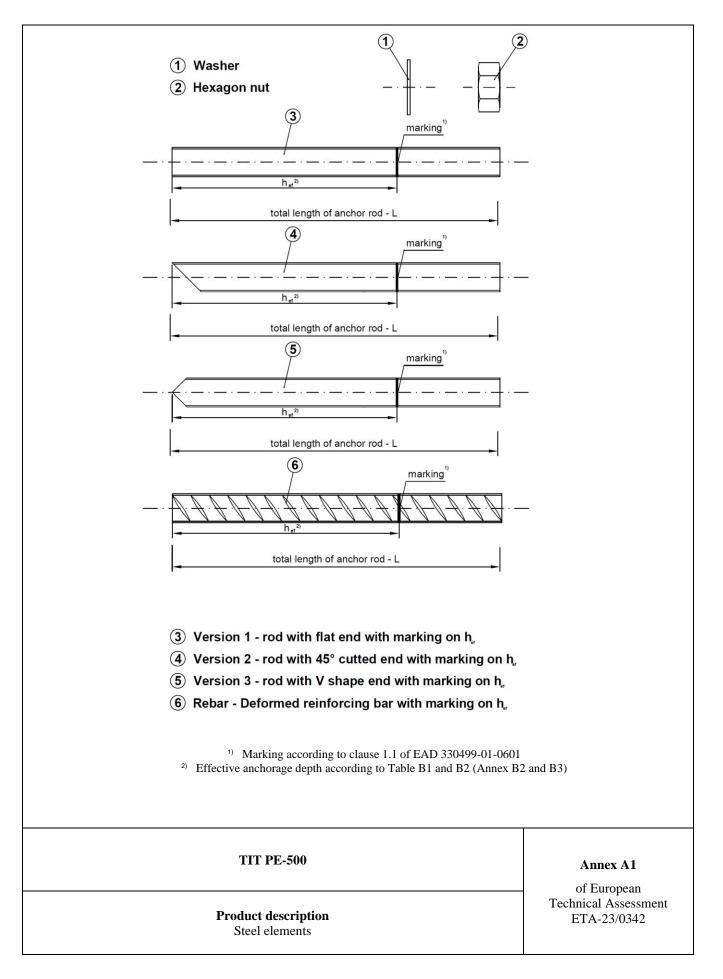
For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete".

4 Attestation and verification of constancy of performance (AVCP)


4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2023-04-04 by Thomas Bruun Manager, ETA-Danmark

Page 7 of 31 of European Technical Assessment no. ETA-23/0342, issued on 2023-04-24

Designation		Material	Material							
Steel, zinc plated										
electroplated $\geq 5 \ \mu m$ acc.	to EN ISO 4042									
hot-dip galvanized $\ge 40 \ \mu$	m acc. to EN ISO 1461		-							
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation						
	4.8	$f_{uk} \geq 400 \ N/mm^2$	$f_{yk} \geq 320 \ N/mm^2$	$A_5 > 8\%^{1)}$						
	5.8	$f_{uk} \geq 500 \ N/mm^2$	$f_{yk} \geq 400 \ N/mm^2$	$A_5 > 8\%^{1)}$	EN ISO 898-1					
	8.8	$f_{uk} \geq 800 \ N/mm^2$	$f_{yk} \geq 640 \; N/mm^2$	$A_5 \geq 12\%^{1)}$						
	10.9	$f_{uk} \geq 1000 \ N/mm^2$	$f_{yk} \geq 900 \ N/mm^2$	$A_5 > 9\%$						
Hexagon nut	4	for class 4.8 rods								
	5	for class 5.8 rods			EN 898-2					
	8	for class 8.8 rods			EN 898-2					
	10	for class 10.9 rods								
Washer	Steel, accord	ling to EN ISO 7089; corre	esponding to anchor rod	material						
Stainless steel A2		(Materials)	1.4301, 1.4307, 1.4567,	1.4541						
Stainless steel A4		(Materials)	1.4401, 1.4404, 1.4571,	1.4362,1.4578						
High corrosion resistance	stainless steel (HCR)	(Materials)	1.4529, 1.4565	1						
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation						
	50	$f_{uk} \geq 500 \ N/mm^2$	$f_{yk} \geq 210 \ N/mm^2$	$A_5 > 8\%^{1)}$	EN 10088 EN ISO 3506					
	70	$f_{uk} \geq 700 \ N/mm^2$	$f_{yk} \geq 450 \ N/mm^2$	$A_5 \geq 12\%^{1)}$	EN 150 5500					
		$f_{uk} \geq 800 \ N/mm^2$	$f_{yk} \geq 600 \ N/mm^2$	$A_5 \! \geq \! 12\%^{1)}$						
	80									
Hexagon nut	80 50	for class 50 rods			ENT 40000					
Hexagon nut		for class 50 rods for class 70 rods			EN 10088 EN ISO 3506					
Hexagon nut	50				EN 10088 EN ISO 3506					

 $^{1)}\mbox{For seismic performance category C2, } A_5 > 12\%$

Commercial standard threaded rods may be used, with:

material and mechanical properties according to Table A3,

confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004,

marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

Filling Washer for filling annular gap

TIT PE-500

Product description Materials (1) Annex A2

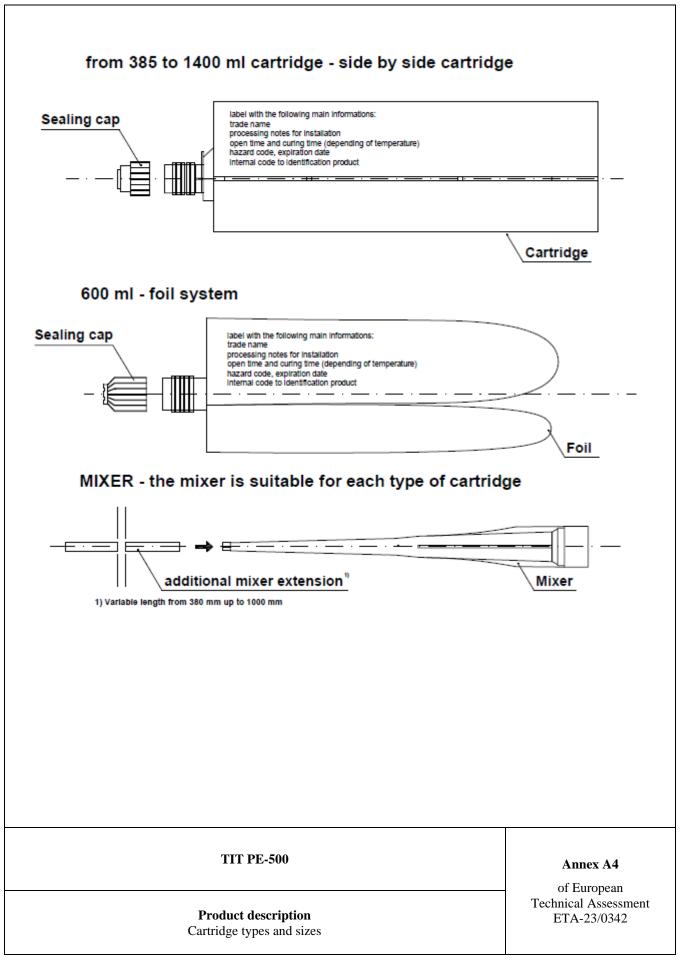

Table A2: Reinforcing bars (Rebar)	
Designation	Material
	Bars and de-coiled rods Class B or C
Rebar according to	With f_{yk} and k according to NDP or NCL or EN 1992-1-1:2004/NA
EN 1992-1-1:2004+AC:2010, Annex C	$f_{uk} = f_{tk} = k \ x \ f_{yk}$
	Rib height of the bar (h) in the range $0.05d \le h \le 0.07d$

Table A3: Injection mortars

Product	Composition					
TIT PE-500 two component injection mortars	Additive: quartz Bonding agent: epoxy resin					

TIT PE-500

Product description Materials (2) Annex A3

Specifications of intended use

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirement 1 (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M30 and from ϕ 8 to ϕ 32.

Seismic performance category C2: sizes M12 to M24, rods with $f_{uk} \le 800 \text{ N/mm}^2$ and $A_5 \ge 12\%$

Working life of 50 and 100 years

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non-cracked concrete: sizes from M8 to M30 and from ϕ 8 to ϕ 32.
- Cracked concrete: sizes from M12 to M30.

Temperature range:

The anchors may be used in the following temperature range:

- -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C).
- -40° C to $+55^{\circ}$ C (max. short term temperature $+55^{\circ}$ C and max. long term temperature $+43^{\circ}$ C).
- -40° C to $+80^{\circ}$ C (max. short term temperature $+80^{\circ}$ C and max. long term temperature $+50^{\circ}$ C).

Use conditions (environmental conditions):

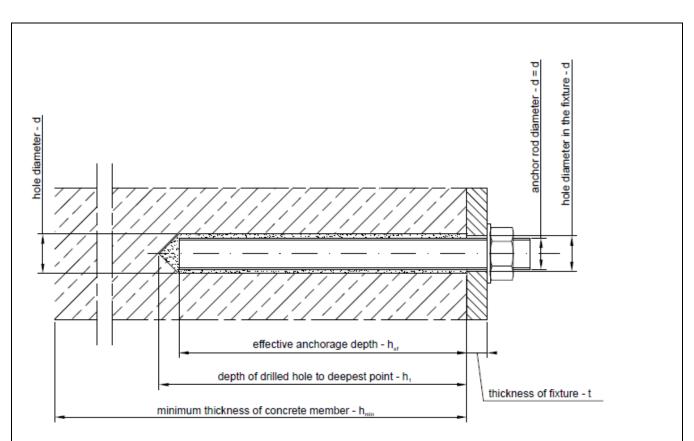
- Structures subject to dry internal conditions: all materials according to Table A1.
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:

Stainless steel A2 according to Annex A4, Table A1: CRC II

Stainless steel A4 according to Annex A4, Table A1: CRC III

High corrosion resistance steel HCR according to Annex A4, Table A1: CRC V

Installation:


- Dry or wet concrete (use category I1): sizes from M8 to M30 and from ϕ 8 to ϕ 32.
- Flooded holes with the exception of seawater (use category I2): sizes from M8 to M30 and from ϕ 8 to ϕ 32.
- Installation direction D3 (downward and horizontal and upwards installation): sizes from M8 to M30 and from ϕ 8 to ϕ 32.
- The anchors are suitable for hammer drilled holes (HD), for hollow drill bit (HDB) and for compressed air drill (CA): sizes from M8 to M30 and from ϕ 8 to ϕ 32. Diamond drilled holes (DD) for sizes from M16 to M30.

Design methods:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static loads are designed in accordance to EN 1992-4 and Technical Report TR055.
- Anchorages under seismic actions are designed in accordance to EN 1992-4 and Technical Report TR045.

TIT PE-500

Intended use Specifications

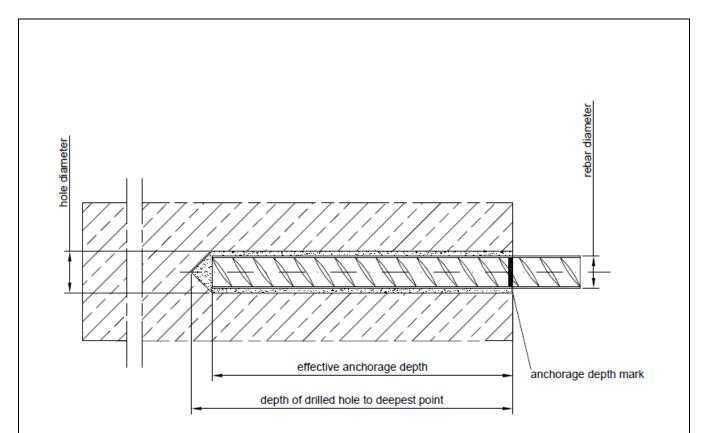


Table B1: Installation data for threaded rods

Size		M8	M10	M12	M16	M20	M24	M27	M30
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	22-24	28	30	35
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26	30	33
Effective embedment	h _{ef,min} [mm]	60	60	70	80	90	96	110	120
depth	h _{ef,max} [mm]	160	200	240	320	400	480	540	600
Depth of the drilling hole	h1 [mm]				$h_{ef} + $	5 mm			
Minimum thickness of the concrete slab	h _{min} [mm]	$h_{\rm ef} + 30 \ mm; \geq 100 \ mm \qquad \qquad h_{\rm ef} + 2d_0$							
Maximum setting torque moment	T _{fix} [Nm]	10	20	40	80	130	200	270	300
Minimum spacing	s _{min} [mm]	40	50	60	75	90	115	120	140
Minimum edge distance	c _{min} [mm]	35	40	45	50	55	60	75	80

TIT PE-500

Intended use Installation data for threaded rods

Table B2: Installation data for rebars

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32		
Nominal drilling diameter	d ₀ [mm]	10-12	12-14	14-16	18	20	25	26	30-32	35	35	40		
Effective embedment	h _{ef,min} [mm]	60	70	80	80	100	120	120	150	180	180	200		
depth	h _{ef,max} [mm]	160	200	240	280	320	400	440	500	560	600	640		
Depth of the drilling hole	h ₁ [mm]		h _{ef} + 5 mm											
Minimum thickness of the concrete slab	h _{min} [mm]		$ \begin{array}{c} h_{ef} + 30 \text{ mm}; \\ \geq 100 \text{ mm} \end{array} \qquad $											
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	105	125	140	150	160		
Minimum edge distance	c _{min} [mm]	40	45	45	50	50	65	65	70	75	80	80		
	•													
			ТП	C PE-500							Annex B	2		

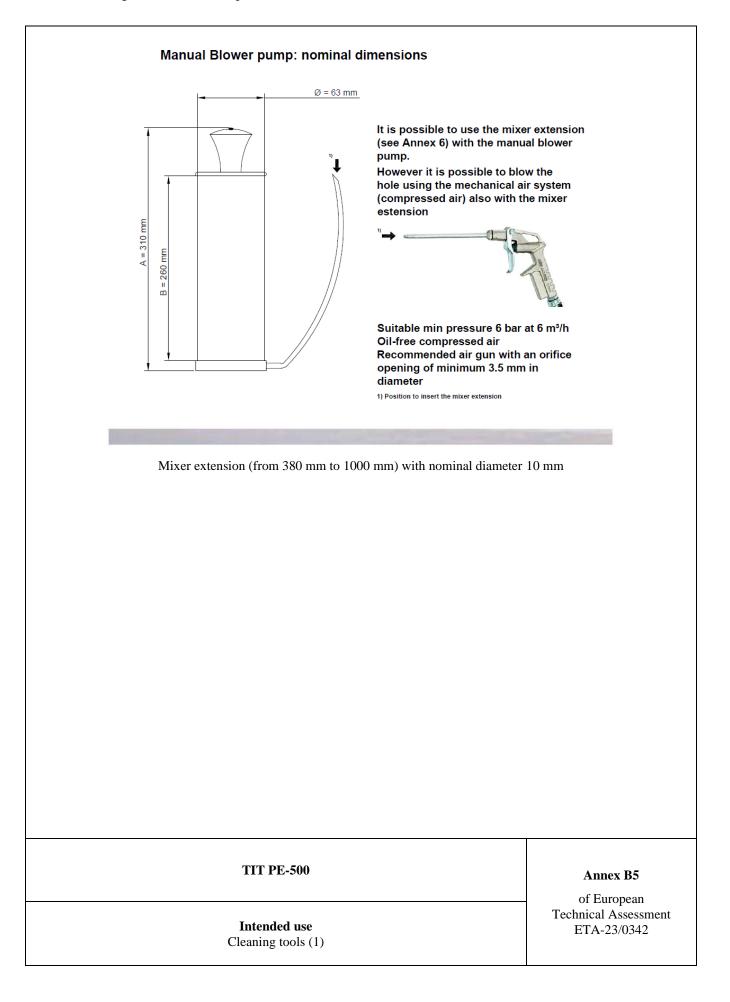
Intended use Installation data for rebars

TIT PE-500										
Concrete T° [C°]	Working time	Torque time ³⁾	Minimum curing time ³⁾							
$0^{\circ}C^{2)}$	2 h	48 h	96 h							
5°C ²⁾	1 h 15 min	24 h	48 h							
10°C	1 h	12 h	24 h							
15°C	45 min	6 h	18 h							
20°C	30 min	4 h	12 h							
25°C	20 min	4 h	10 h							
30°C	15 min	3 h	5 h							
35°C	12 min	3 h	5 h							
40°C	8 min	3 h	5 h							

Table B3: Maximum processing time and minimum c	curing time
---	-------------

1) The minimum time from the end of the mixing to the time when the anchor is loaded

2) Minimum resin temperature recommended, for injection between 5°C and 0°C, equal to 10°C.

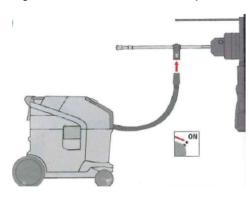

3) In presence of water the curing time must be doubled

4) Max resin temperature of 24°C for installation at maximum setting depth

TIT PE-500

Annex B4 of European Technical Assessment ETA-23/0342

Intended use Maximum processing time and minimum torque and curing time


	B4: Standard brush dia	meter	for th	readed	rods											
	Threaded rod diameter		N	18	M1	0	M12		M16	M20)	M24	M27		M30	
\mathbf{d}_{0}	Nominal drill hole [1	nm]	1	0	12		14		18	22-24	4	28	30		35	
d _b	Brush diameter [m	-		2	14		16		20	26		30	35		37	
able	B5: Standard brush dia	meter	for re	bars												
	Rebar diameter			¢	ð8			9	Ø10			Ø12		Ģ	ð14	
\mathbf{d}_{0}	Nominal drill hole [1	nm]		10		12		12	1	4	14		16		18	
$\mathbf{d}_{\mathbf{b}}$	Brush diameter [m	m]		12		14		14	1	6	16		18		20	
÷ able]	<u> </u>	2)	nechai	_(3) nical br	rush) f	or thr	eaded	rods								
	Threaded rod diameter			M16	usii) i	<u> </u>	M20	Tous	M	24		M27		M3)	
d ₀	Nominal drill hole [mm]		18			22-24		2			30		35		
d _b	Brush diameter [m			20			26		3	0		32			37	
	B7: Special brush diam		nechai	nical br	ush) f	or reb	ars									
Th	readed rod diameter	Ø	8	Ø1	.0	Ø	12	Ø14	Ø16	Ø20	Ø25	Ø22	Ø28	Ø30	Ø32	
d ₀	Nominal drill hole [mm]	10	12	12	14	14	16	18	20	25	30-32	26	35	35	40	
d _b	Brush diameter [mm]	12	14	14	16	16	18	20	22	27	32	27	37	37	42	
£	 Steel bristles Steel stem Threaded connect Extension special Drilling tool connect 	brush				sion	-		5)							

Hollow Drill Bit (HDB)

This drilling method is a hammer drilling method.

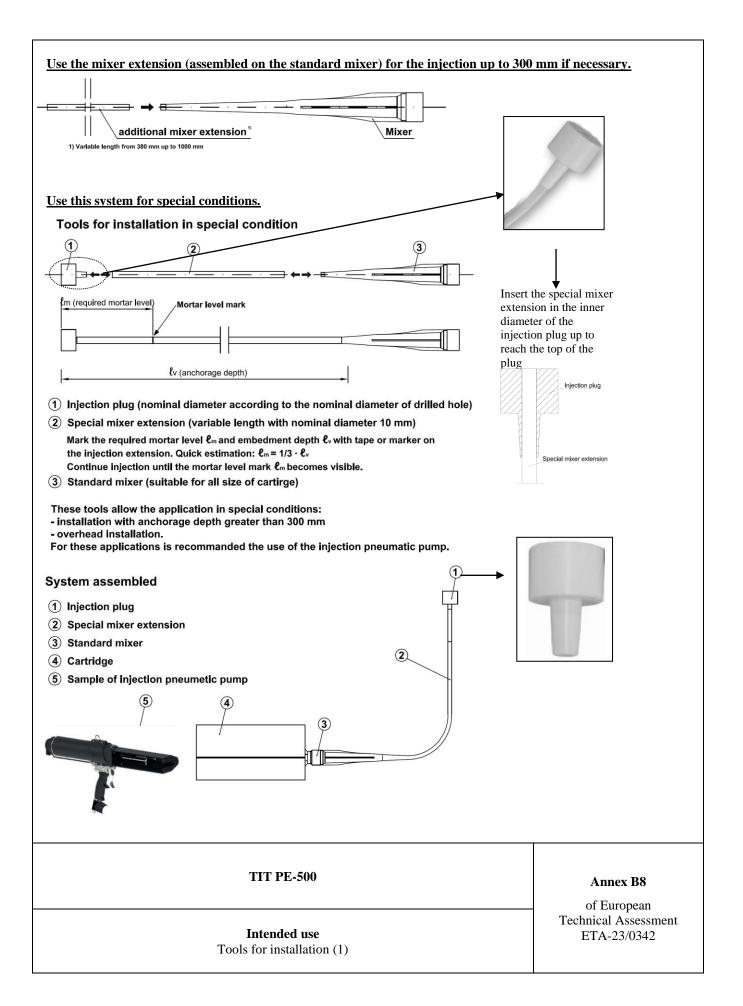
This drilling system removes the dust and cleans the bore hole during the drilling operation when used in accordance with the user's manual.

This drilling system include a vacuum cleaner. A suitable dust extraction system must be used. e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data.

Switch-on the vacuum cleaner before to dril

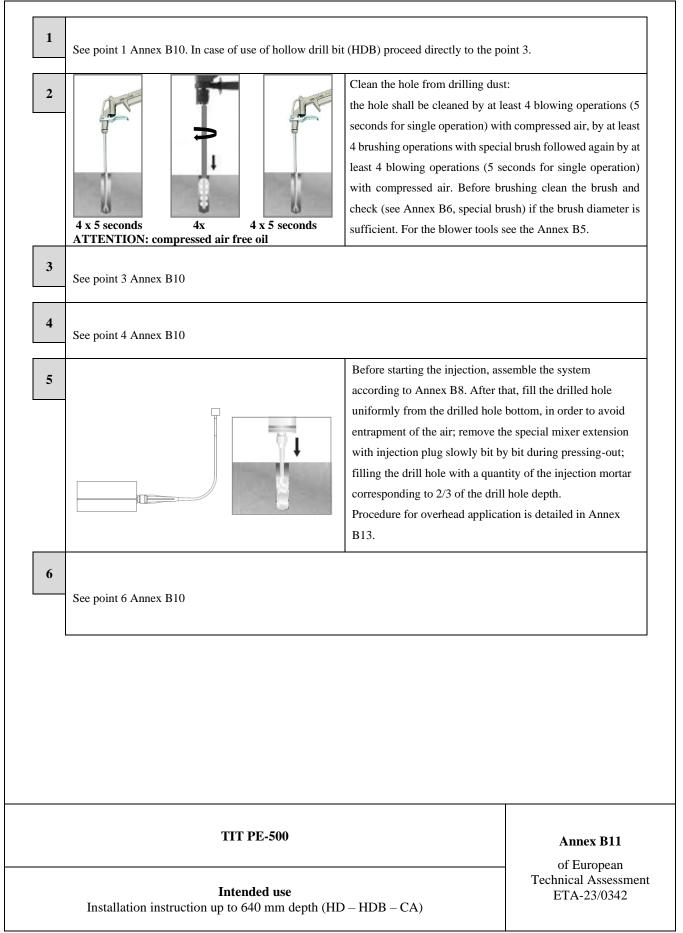
Table B8: HDB perforation diameter for threaded rods

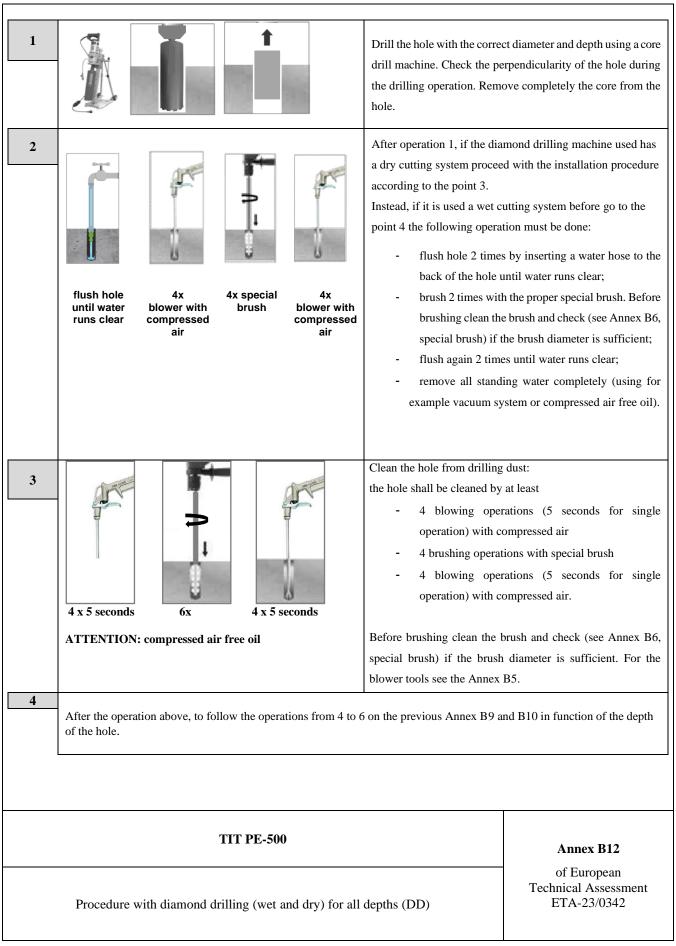
Th	readed rod diameter	M8	M10	M12	M16	M20	M24	M27	M30
do	Nominal drill hole [mm]	10	12	14	18	22-24	28	30	35

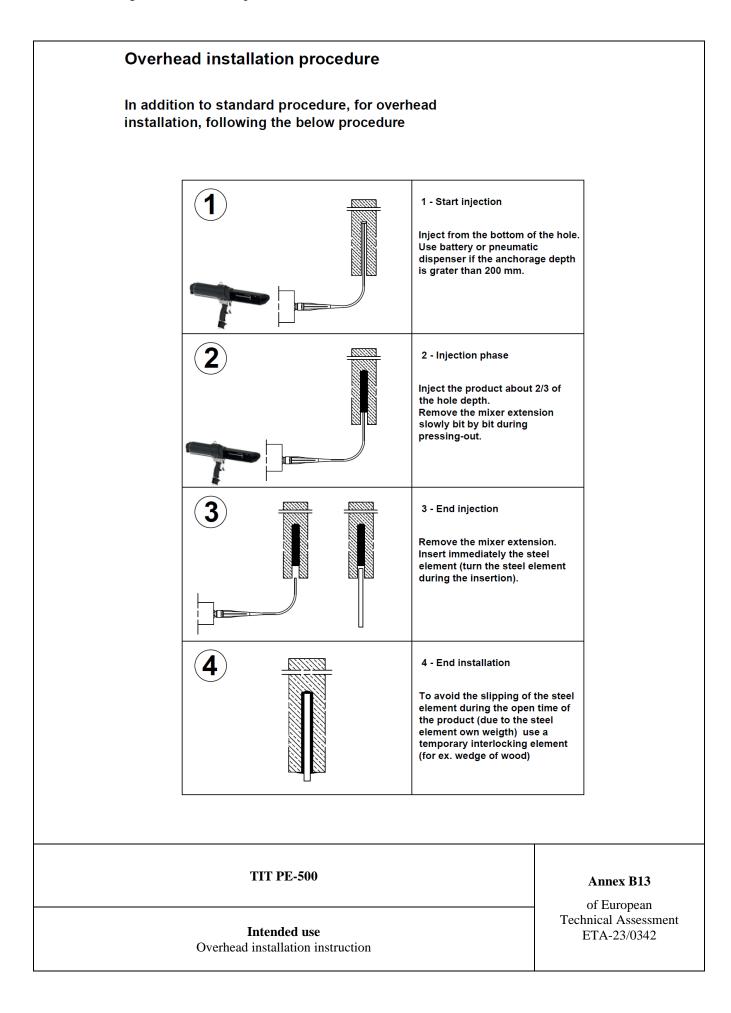

Table B9: HDB perforation diameter for rebars

	Rebar diameter	φ8	φ10	φ12	φ14	¢ 16	¢20	φ 22	¢ 25	¢ 28	¢ 30
d ₀	Nominal drill hole [mm]	10-12	12-14	14-16	18	20	25	26	30-32	35	35

TIT PE-500


Annex B7


Intended use Hollow drill bit (HDB) specification



Injection dispensers	Cartridges	Clean hole tools	Maximum depth of the drill hole
Manual	385 ml 585 ml	Blower pump or compressed air and standard brush or special brush or HDB	300 mm*
Manual+ Cartridge Adaptor	600 ml Foil system	Blower pump or compressed air and standard brush or special brush or HDB	300 mm*
Battery	385 ml 585 ml	Compressed air and special brush or HDB	300 mm to 640 mm*
Pneumatic	385 ml 585 ml 1000 ml 1400 ml	Compressed air and special brush or HDB	300 mm to 640 mm*
te: use the mixer extension described in A	nnex B8 for the inject	ion of the mortar	
TI	Т РЕ-500		Annex B9
			of European Technical Assessment

1		rotary percussive machine. Cl	ct diameter and depth using a neck the perpendicularity of the ation. In case of use of hollow directly to the point 3
2	Image: AxImage: AxImage: Ax4x4x4x4x4xBlower ManualStandardPumpBrushPumpif necessary use a mixer extension for the bloweroperation (see Annex B5)	at least 4 brushing operational blowing operations; before	e least 4 blowing operations, by s followed again by at least 4 brushing clean the brush and d brush) if the brush diameter is
3	u	Unscrew the front cup, screw cartridge in the gun.	on the mixer and insert the
4	NO OK	Before starting to use the cart product, being sure that the tw mixed. The complete mixing product, obtained by mixing out from the mixer with a uni	wo components are completely is reached only after that the the two components, comes
5	if necessary, use a mixer extension for the injection (see Annex B8)	bottom, in order to avoid entr	y starting from the drilled hole rapment of the air; remove the g pressing-out; filling the drill jection mortar corresponding
6	ATTENTION: Use the rods dry and free oil and other contaminants	anchorage depth, slowly and removing excess of injection Observe the working time acc	mortar around the rod. cording Annex B4. Wait the B4. It can be optionally filled
	TIT PE-500		Annex B10 of European
	Intended use Installation instruction up to 300 mm depth (HD –	HDB – CA)	Technical Assessment ETA-23/0342

Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure – characteristic tension res	istance				1	1		1		1
Steel class 4.8	N _{Rk.s}	[kN]	15	23	34	63	98	141	183	224
Steel class 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	229	280
Steel class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Steel class 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
Stainless steel A2, A4, HCR class 50	N _{Rk,s}	[kN]	18	29	42	78	122	176	229	280
Stainless steel A2, A4, HCR class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	321	392
Stainless steel A4, HCR class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Steel failure – characteristic tension res			or						1	
Steel class 4.8	γ _{Ms,N} ¹⁾	[-]				1	50			
Steel class 5.8	γ _{Ms,N} ¹⁾	[-]					.50			
Steel class 8.8	$\gamma_{Ms,N}^{Ms,N}$	[-]					.50			
Steel class 10.9	$\gamma_{Ms,N}^{1}$	[-]					40			
Stainless steel A2, A4, HCR class 50	$\gamma_{Ms,N}^{1}$	[-]					86			
Stainless steel A2, A4, HCR class 70	$\gamma_{Ms,N}^{1}$	[-]					.80			
Stainless steel A4, HCR class 80	$\gamma_{Ms,N}^{1}$	[-]				· · · · · · · · · · · · · · · · · · ·	.60			
Steel failure – characteristic shear resis			rm							
Steel class 4.8	V ⁰ _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Steel class 5.8	V _{Rk,s}	[kN]	9	12	21	39	61	88	115	140
Steel class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	113	224
Steel class 10.9	V ⁰ _{Rk,s}	[kN]	13	29	42	78	122	176	230	280
Stainless steel A2, A4, HCR class 50	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88	115	140
Stainless steel A2, A4, HCR class 50 Stainless steel A2, A4, HCR class 70	V Rk,s	[kN]	13	20	29	55	86	124	160	140
Stainless steel A4, HCR class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel failure – characteristic shear resis	1		10		01	00	70		101	
Steel class 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Steel class 5.8	M ⁰ _{Rk,s}	[Nm]	19	30	65	166	324	561	832	1125
Steel class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799
Steel class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	1664	2249
Stainless steel A2, A4, HCR class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	166	324	561	832	1124
Stainless steel A2, A4, HCR class 50	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1165	1574
Stainless steel A4, HCR class 80	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799
Steel failure – characteristic shear resis				00	100	200	017	0,0	1001	
Steel class 4.8	γ _{Ms,V} ¹⁾	[-]				1	25			
Steel class 5.8	γ _{Ms,V} ¹⁾	[-]					25			
Steel class 8.8	γ _{Ms,V} ¹⁾	[-]					25			
Steel class 10.9	γ _{Ms,V} ¹⁾	[-]					50			
	γ _{Ms,V} ¹⁾	[-]					38			
		L J					56			
Steel class 10.9 Stainless steel A2, A4, HCR class 50 Stainless steel A2, A4, HCR class 70	γ _{Ms,V} ¹⁾	[-]								

Table C1: Characteristic values for steel tension resistance and steel shear resistance – threaded rods.

¹⁾ In the absence of national regulation

TIT PE-500

Annex C1 of European Technical Assessment

ETA-23/0342

Performances

Characteristic values for steel tension resistance and steel shear resistance for threaded rods

٦

Size			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure											
Characteristic resistance	N _{Rk,s}	[kN]			Se	e Annex C	1 – Table	C1			
Partial factor	γ _{Ms,N}	[-]			Se	e Annex C	1 – Table	C1			
Combined pull-out and concrete con	- I		concrete	C20/25 fo	r HD – HI	BD and CA					
Characteristic bond resistance								1.5.0		110	
temperature range -40°C / +40°C Characteristic bond resistance	$\tau_{Rk,ucr}$	[N/mm ²]	16,0	16,0	16,0	16,0	16,0	16,0	15,0	14,0	
temperature range -40°C / +55°C	$\tau_{Rk,ucr}$	[N/mm ²]	15,0	15,0	15,0	15,0	15,0	15,0	14,0	14,0	
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{Rk,ucr}$	[N/mm ²]	11,0	11,0	11,0	10,0	10,0	10,0	10,0	10,0	
Combined pull-out and concrete con	e failure in	non-cracked	concrete	C20/25 fo	r DD	1				1	
Characteristic bond resistance		[N/mm ²]			-	14,0	14,0	14,0	13,0	13,0	
temperature range -40°C / +40°C Characteristic bond resistance	$\tau_{Rk,ucr}$. ,	-	-	-			,			
temperature range -40°C / +55°C	$\tau_{Rk,ucr}$	[N/mm ²]	-	-	-	13,0	13,0	13,0	12,0	12,0	
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{Rk,ucr}$	[N/mm ²]	-	-	-	10,0	10,0	10,0	9,0	9,0	
Reduction factor ψ^0_{sus} for non-crack	ed concrete	valid for all	drilling m	nethod							
Sustained load factor temperature range -40°C / +40°C	ψ^0_{sus}	[-]				0,	73				
Sustained load factor temperature range -40°C / +55°C	ψ^0_{sus}	[-]				0,	73				
Sustained load factor	ψ^0_{sus}	[-]				0,	73				
temperature range -40°C / +80°C Increasing factor for non-cracked											
concrete related to strength f _{ck}	ψ_{c}	[-]	(f _{ck} /20) ^{0,2}								
Concrete cone failure											
Factor for non-cracked concrete	k _{ucr,N}	[-]				11	·				
Edge distance	Ccr,N	[mm]				1,5					
Spacing	S _{cr,N}	[mm]				3,0	• h _{ef}				
Splitting failure											
						If h =	h _{min}				
						$S_{cr,Nsp} =$	$4,0 \cdot h_{ef}$				
						If $h_{min} <$	$h < 2 h_{ef}$				
					h						
Spacing	S _{cr,Nsp}	[mm]			h = 2h _{ef}						
Spacing	Ocr,Nsp	[IIIII]									
					h _{min}	2h _{ef}	4h _{er}	S _{crN,sp}			
					S	$_{r,Nsp} = inter$	 nolate valu				
					50	$\frac{1}{1000} = \frac{1}{1000}$		63			
						S _{cr,Nsp}					
Edge distance	C _{cr,Nsp}	[mm]				0,5 ·					
Installation factor for combined pull			splitting f	ailure		5,0	ст,ор				
Installation factors for category I1	, concre		-r			1.	0				
Installation factors for category I2	γ _{inst}	[-]				1.					
	TĽ	Г РЕ-500						A	Annex C	2	
									f Europe		
	Perf	ormances						Techni	cal Asse	essment	

Size			M12	M16	M20	M24	M27	M30
Steel failure		<u>.</u>						
Characteristic resistance	N _{Rk,s}	[kN]			See Annex C	1 – Table C1		
Partial factor	γ _{Ms,N}	[-]			See Annex C	1 – Table C1		
Combined pull-out and concrete c	one failur	e in cracked	concrete C20/	'25 for HD – HI	BD and CA			
Characteristic bond resistance temperature range -40°C / +40°C	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,5	7,0	8,0	-	-
Characteristic bond resistance temperature range -40°C / +55°C Characteristic bond resistance	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,5	7,0	8,0	-	-
temperature range -40°C / +80°C	$\tau_{Rk,cr}$	[N/mm ²]	5,5	5,5	5,5	5,5	-	-
Combined pull-out and concrete c	one failur	e in cracked	concrete C20/	25 for DD				
Characteristic bond resistance temperature range -40°C / +40°C	$\tau_{Rk,cr}$	[N/mm ²]	-	7,5	7,0	7,0	7,0	6,5
Characteristic bond resistance temperature range -40°C / +55°C	$\tau_{Rk,cr}$	[N/mm ²]	-	7,5	7,0	7,0	7,0	6,5
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{Rk,cr}$	[N/mm ²]	-	5,5	5,0	5,0	5,0	4,5
Reduction factor ψ^{0}_{sus} for cracked	concrete	valid for all d	rilling metho	d				
Sustained load factor temperature range -40°C / +40°C	ψ^0_{sus}	[-]			0,7	73		
Sustained load factor temperature range -40°C / +55°C	ψ^0_{sus}	[-]			0,7	73		
Sustained load factor temperature range -40°C / +80°C Increasing factor for cracked	ψ^0_{sus}	[-]			0,7	73		
concrete related to strength f_{ck}	ψ_{c}	[-]			1,0	00		
Concrete cone failure								
Factor for cracked concrete	k _{cr,N}	[-]			7,			
Edge distance Spacing	C _{cr,N}	[mm] [mm]			1,5 3,0			
Splitting failure	Der,N	[]						
Splitting failure					If h –	h		
		-			If $h = S_{cr,Nsp} =$			
					$S_{cr,Nsp} =$ If $h_{min} < 1$			
				h				
	_							
Spacing	$S_{cr,Nsp}$	[mm]		h = 2h	let			
				h _{mi}	n 2h _{er}	4h _{er}	S _{crN,sp}	
					$S_{cr,Nsp} = interpresent$		-	
					if h≥			
					S _{cr,Nsp} =			
Edge distance	C _{cr,Nsp}	[mm]			0,5 ·	S _{cr,sp}		
Installation factor for combined p	ull-out, co	ncrete cone a	nd splitting f	ailure				
Installation factors for category I1	γ_{inst}	[-]			1,			
Installation factors for category I2	1 inst	LJ			1,	2		
		TIT PE-5	00				Annex	
		Performar					of Euroj Technical As	

ſ

Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic resistance	$V^0_{\ Rk,s}$	[kN]			See	e Annex C	21 – Table	C1		
Partial factor	$\gamma_{Ms,V}$	[-]			Se	e Annex C	21 – Table	C1		
Ductility factor	k ₇	[-]				1	,0			
Steel failure with lever arm										
Characteristic resistance	$M^0_{\ Rk,s}$	[kN]			Se	e Annex C	21 – Table	C1		
Partial factor	$\gamma_{Ms,V}$	[-]			Se	e Annex C	21 – Table	C1		
Concrete pry out failure										
Factor	k ₈	[-]				2	,0			
Installation factor	γ_{inst}	[-]				1	,0			
Concrete edge failure										
Effective length of anchor under shear loading	$l_{\rm f}$	[-]			$l_f = h_{ef}$ and	$d \le 12 d_{nor}$	n		≤ max	n _{ef} and (8 d _{nom;} , mm)
Installation factor	γ_{inst}	[-]				1	.0		1	/

TIT PE-500

Annex C4

Performances

Characteristic values shear resistance load in non- cracked and cracked concrete for threaded rod under static and quasi-static loads.

ſ

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32
Steel failure													
Characteristic resistance	N _{Rk,s}	[kN]						$A_s \propto f_{uk}^2$)				
Cross section area	As	[mm ²]	50	79	113	154	201	314	380	491	616	707	804
Partial factor	$\gamma_{Ms,N}$ ¹⁾	[-]		1			1	1,4	1	1	1	1	1
Combined pull-out and concrete co	one failure i	n non-crack	ed conc	rete C2)/25 for	HD – H	BD and	CA					
Characteristic bond resistance temperature range -40°C / +40°C	$\tau_{Rk,ucr}$	[N/mm ²]	15,0	15,0	15,0	14,0	14,0	13,0	13,0	12,0	12,0	12,0	10,0
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{Rk,ucr}$	[N/mm ²]	15,0	15,0	15,0	14,0	14,0	13,0	13,0	12,0	12,0	12,0	10,0
Characteristic bond resistance temperature range -40°C / +120°C	$\tau_{Rk,ucr}$	[N/mm ²]	10,0	10,0	10,0	10,0	10,0	9,5	9,0	9,0	9,0	9,0	7,5
Reduction factor ψ^0_{sus} for cracked (concrete va	lid for all dr	illing m	ethod									
Sustained load factor temperature range -40°C / +40°C	ψ^0_{sus}							0,73					
Sustained load factor temperature range -40°C / +55°C Sustained load factor	ψ^0_{sus}							0,73					
temperature range -40°C / +80°C	$\psi^0{}_{sus}$							0,73					
Increasing factor for non-cracked concrete related to strength f_{ck}	ψ_{c}	[-]						$(f_{ck}/20)^{0,2}$	2				
Concrete cone failure	T	I	1										
Factor for non-cracked concrete	k _{ucr,N}	[-]	11,0										
Edge distance	C _{cr,N}	[mm]						1,5 h_{ef}					
Spacing	$S_{\rm cr,N}$	[mm]						3,0 h _{ef}					
Splitting failure													
								$f h = h_{mi}$					
								$N_{\rm Nsp} = 4,0$					
							II n _n	nin < h <	∠ n _{ef}				
						h				1			
Spacing	$\mathbf{S}_{\mathrm{cr,Nsp}}$	[mm]				h = 2h _{ef}	\vdash			-			
								\searrow					
						h _{min} .							
							2h _{ef}		4h _{er}	S _{crN,sp}			
							$S_{cr,Nsp} = i$	nterpola f h≥2 h		s			
			<u> </u>					$r_{\rm Nsp} = 2$					
Edge distance	C _{cr,Nsp}	[mm]						$0,5 \cdot S_{cr,s}$					
Installation factor for combined pu		crete cone ar	nd splitti	ing failu	re								
Installation factors for category I1								1,0					
Installation factors for category I2	γ _{inst}	[-]						1,2					
¹⁾ In the absence of other national reg ²⁾ f_{uk} shall be taken from the specific		nforcing bars	8										
]	FIT PE-50)0								Annez	r C5	
											of Euro		
	-	6							\neg		nical A		nent
Characteristic value		erforman			modra	lacre	rata				TA-23		
Unaracteristic value	s tension	resistance	LIO20 11	u non-(THCKEC	1 COBCI	ere		1				

			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32
Steel failure without lever arm													
Characteristic resistance	$V^0_{\ Rk,s}$	[kN]					0,5	5 x A _s x	f _{uk} ²⁾				
Partial factor	$\gamma_{Ms,V} \ ^{1)}$	[-]						1,5					
Cross section area	As	[mm ²]	50	79	113	154	201	314	380	491	616	707	804
Ductility factor	k ₇	[-]						1,0					
Steel failure with lever arm	-												
Characteristic resistance	M ⁰ _{Rk,s}	[kN]					1,2	x W _{el} x	$f_{uk}^{\ 2)}$				
Elastic section modulus	W_{el}	[mm ³]	50	98	170	269	402	785	1045	1534	2155	2650	321
Partial factor	$\gamma_{Ms,V} \ ^{1)}$	[-]						1,5					
Concrete pry out failure													
Factor	k ₈	[-]						2,0					
Installation factor	γ_{inst}	[-]						1,0					
Concrete edge failure													
Effective length of anchor under shear loading	lf	[-]			$l_{\rm f} = h_{\rm ef}$	$f_{\rm f}$ and ≤ 1	2 d _{nom}					_{ef} and (8 d _{nom;} ; mm)	
Installation factor	γ_{inst}	[-]						1,0			500		

Table C7. Displacement under tension loads for non-cracked concrete – threaded rods under static and quasi-static loads for hammer drilling (HD), hollow drill bit (HDB) and compressed air drilling (CA)

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement in non-cra	rete C20/25 to C50/60	under te	nsion load	ls						
Temperature range -40°C / +40°C	δ_{N0}	[mm/(N/mm ²)]	0,01	0,02	0,03	0,03	0,03	0,03	0,04	0,05
remperature range -40 C7 +40 C	δ_{N^∞}	[mm/(N/mm ²)]	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,05
T (000 / 05500	δ_{N0}	[mm/(N/mm ²)]	0,01	0,02	0,03	0,03	0,03	0,03	0,04	0,05
Temperature range -40°C / +55°C	δ_{N^∞}	[mm/(N/mm ²)]	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
T 1000 / 0000	δ_{N0}	[mm/(N/mm ²)]	0,02	0,03	0,04	0,04	0,04	0,05	0,06	0,07
Temperature range -40°C / +80°C	δ_{N^∞}	[mm/(N/mm ²)]	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,07

Table C8: Displacement under tension loads for -cracked concrete – threaded rods under static and quasi-static loads for hammer drilling (HD), hollow drill bit (HDB) and compressed air drilling (CA)

Size			M12	M16	M20	M24
Characteristic displacement in -crack	ed concrete	C20/25 to C50/60 und	ler tension loads			
Temperature repose 40°C / 140°C	δ_{N0}	[mm/(N/mm ²)]	0,06	0,06	0,06	0,07
Temperature range -40°C / +40°C	δ_{N^∞}	[mm/(N/mm ²)]	0,26	0,24	0,26	0,23
	δ_{N0}	[mm/(N/mm ²)]	0,06	0,06	0,06	0,07
Temperature range -40°C / +55°C	δ_{N^∞}	[mm/(N/mm ²)]	0,26	0,24	0,26	0,23
T	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,08	0,09
Temperature range -40°C / +80°C	δ_{N^∞}	[mm/(N/mm ²)]	0,33	0,33	0,33	0,33

Table C9. Displacement under tension loads for non-cracked concrete – threaded rods under static and quasi-static loads for diamond drilling (DD)

Size			M16	M20	M24	M27	M30
Characteristic displacement in non-cra	cked conci	rete C20/25 to C50/60	under tension	loads			
Temperature range -40°C / +40°C	δ_{N0}	[mm/(N/mm ²)]	0,02	0,03	0,03	0,03	0,04
Temperature range -40 C7 +40 C	δ_{N^∞}	[mm/(N/mm ²)]	0,05	0,05	0,05	0,05	0,05
T	δ_{N0}	[mm/(N/mm ²)]	0,02	0,03	0,03	0,04	0,04
Temperature range -40°C / +55°C	δ_{N^∞}	[mm/(N/mm ²)]	0,05	0,05	0,05	0,06	0,06
T	δ_{N0}	[mm/(N/mm ²)]	0,03	0,04	0,04	0,05	0,05
Temperature range -40°C / +80°C	δ_{N^∞}	[mm/(N/mm ²)]	0,07	0,07	0,07	0,08	0,08

Performances Displacement under service loads

Table C10. Displacement under tension loads for -cracked concrete – threaded rods under static and quasi-static loads for diamond drilling (DD)

Size			M16	M20	M24	M27	M30
Characteristic displacement in -crack	ed concrete	C20/25 to C50/60 un	der tension loa	ds			
Temperature range -40°C / +40°C	$\delta_{\rm N0}$	[mm/(N/mm ²)]	0,05	0,05	0,07	0,07	0,08
remperature range -40 C7 +40 C	δ_{N^∞}	[mm/(N/mm ²)]	0,25	0,26	0,26	0,26	0,028
T (1000 / 15500	δ_{N0}	[mm/(N/mm ²)]	0,05	0,05	0,07	0,07	0,08
Temperature range -40°C / +55°C	δ_{N^∞}	[mm/(N/mm ²)]	0,25	0,26	0,26	0,26	0,28
T (1000 / 10000	$\delta_{\rm N0}$	[mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11
Temperature range -40°C / +80°C	δ_{N^∞}	[mm/(N/mm ²)]	0,34	0,37	0,37	0,37	0,41

Table C11: Displacement under shear loads for non-cracked and cracked concrete – threaded rods under static and quasi-static loads for all drilling method.

Size		M8	M10	M12	M16	M20	M24	M27	M30	
Characteristic displacement in cracked a	and non-cracked c	oncrete C20	/25 to C5	0/60 unde	er shear lo	oads				
All temperature ranges	$\delta_{V0}factor$	[mm/kN]	0,024	0,020	0,019	0,011	0,007	0,006	0,005	0,005
An temperature ranges	$\delta_{V^\infty} factor$	[mm/kN]	0,036	0,030	0,030	0,017	0,011	0,009	0,007	0,008

Table C12: Displacement under tension loads for non-cracked concrete – rebar under static and quasi-static loads.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32
Characteristic displace	ement in	non-cracked con	crete C2	0/25 to C	50/60 un	der tensi	on loads						
Temperature range -	$\delta_{\rm N0}$	[mm/(N/mm ²)]	0,02	0,02	0,03	0,03	0,03	0,04	0,04	0,05	0,06	0,06	0,07
40°C / +40°C	δ_{N^∞}	[mm/(N/mm ²)]	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,06	0,06	0,06	0,06
Temperature range -	$\delta_{\rm N0}$	[mm/(N/mm ²)]	0,02	0,02	0,03	0,03	0,03	0,04	0,04	0,05	0,06	0,06	0,07
40°C / +55°C δ	δ_{N^∞}	[mm/(N/mm ²)]	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,06	0,06	0,06	0,06
Temperature range -	δ_{N0}	[mm/(N/mm ²)]	0,03	0,00	0,04	0,04	0,04	0,06	0,06	0,06	0,08	0,09	0,09
40°C / +80°C	δ_{N^∞}	[mm/(N/mm ²)]	0,07	0,07	0,07	0,07	0,07	0,08	0,08	0,08	0,09	0,09	0,09

Table C13: Displacement under shear loads for non-cracked concrete – rebar under static and quasi-static loads.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32
Characteristic displacer	nent in non-c	racked conc	rete C20	/25 to C5	0/60 und	er shear	loads						
	$\delta_{V0}factor$	[mm/kN]	0,018	0,014	0,013	0,009	0,008	0,006	0,005	0,004	0,004	0,004	0,003
All temperature ranges	$\delta_{V^\infty} factor$	[mm/kN]	0,027	0,022	0,019	0,014	0,012	0,009	0,008	0,006	0,006	0,005	0,005

TIT PE-500

Performances Displacement under service loads

Table C14: Characteristic values tension resistance load for threaded rod for seismic performance category C2 for50 and 100 years

Size			M12	M16	M20	M24			
Steel failure									
Characteristic resistance	N _{Rk,s,eq,C2}	[kN]	1,0 x N _{Rk,s}						
Partial factor	γ _{Ms,N}	[-]	See Annex C1 – Table C1						
Combined pull-out and concrete cone failure									
Characteristic bond resistance temperature range -40°C / +40°C	$\tau_{\rm Rk,C2}$	[N/mm ²]	5,4	5,3	5,5	5,4			
Characteristic bond resistance temperature range -40°C / +55°C	$\tau_{Rk,C2}$	[N/mm ²]	5,4	5,2	5,5	5,4			
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{Rk,C2}$	[N/mm ²]	3,9	3,8	3,9	3,9			
Increasing factor related to concrete strength f_{ck}	$\psi_{\rm c}$	ψ _c [-]		1,0					
Installation factors for category I1		F 1		1	,0				
Installation factors for category I2	γ _{inst}	[-]	1,2						

Table C15: Characteristic values shear resistance load for threaded rod for seismic performance category C2 for 50 and 100 years

Size	M12	M16	M20	M24		
Steel failure						
Characteristic resistance	V _{Rk,s,eq,C2}	[kN]	0,54 x V ⁰ _{Rk,s}	0,55 x V ⁰ _{Rk,s}	0,68 x V ⁰ _{Rk,s}	0,59 x V ⁰ _{Rk,s}
Partial factor ¹⁾	See Annex C1 – Table C1					

Table C16: Reduction factor for annular gap.

Reduction factor for annular gap								
Without annular gap filling	$\alpha_{ m gap}$	[-]	0,5					
With annular gap filling	$\alpha_{ m gap}$	[-]	1,0					

Table C17: Displacements for tensile and shear load for seismic performance category C2 - threaded rod.

Size	M12	M16	M20	M24						
Displacements for tensile and shear load for seismic performance category C2										
Displacement in tensile at damage limitation states	$\delta_{N,eq,seis(DLS)}$	[mm]	0,22	0,27	0,92	0,54				
Displacement in tensile at ultimate limit state	$\delta_{N,eq,seis(ULS)}$	[mm]	0,28	0,66	1,70	0,93				
Displacement in shear at damage limitation states	$\delta_{V,eq,seis(DLS)}$	[mm]	4,60	4,57	2,39	2,21				
Displacement in shear at ultimate limit state	$\delta_{V,eq,seis(ULS)}$	[mm]	8,27	9,26	7,29	7,42				

TIT PE-500

Performances Characteristic resistance under tension and shear loads for threaded rod for seismic action category C2